Process Controller with Setpoint Programmer
$1 / 16$ DIN - 48×48
M5000 line
User Manual•M.I.U.M5000-3/01.02•Cod.J30-478-1AM5 SEA
(UL)
LISTED

Process Controller
 with Setpoint
 Programmer
 $1 / 16$ DIN - 48×48
 M5000 line
 C

Please, read carefully these instructions before proceeding with the installation of the controller.
Class II instrument, rear panel mounting.
This controller has been designed with compliance to:
Regulations on electrical apparatus (appliance, systems and installations) according to the European Community directive 73/23 CEE amended by the European Comunity directive $93 / 68$ CEE and the Regulations on the essential protection requirements in electrical apparatus EN 61010-1 (IEC 1010-1)
: $90+\mathrm{A1}: 92+\mathrm{A} 2: 95$.
Regulations on Electromagnetic Compatibility according to the European Community directive n089/336/CEE, amended by the European Community directive $n^{\circ} 92 / 31 / C E E$ and the following regulations:
Regulations on RF emissions
EN50081-1 residential environments
EN50081-2 for industrial environments
Regulation on RF immunity
EN500082-2 for industrial equipment and system
It is important to understand that it's responsibility of the installer to ensure the compliance of the regulations on safety requirements and EMC.

The device has no user serviceable parts and requires special equipment and specialised engineers. Therefore, a repair can be hardly carried on directly by the user. For this purpose, the manufacturer provides technical assistance and the repair service for its Customers.
Please, contact your nearest Agent for further information.
All the information and warnings about safety and electromagnetic compatibility are marked with the $\Delta C \in$ sign, at the side of the note.

TABLE OF CONTENTS

1 PAGE 4
PAGE
1.1 Product Coding 5
2 INSTALLATION PAGE 6
2.1 Description PAGE
2.2 OPERATING CONDITIONS PAGE6
7
2.3 Installation PAGE 7
3 ELECTRICAL CONNECTIONS PAGE 8
3.1 Termination unit PAGE
3.2 CABLING LAYOUT PAGE 8
8
3.3 Electrical Connections PAGE 9
4 OPERATIONS PAGE 15
4.1 Front Panel
4.2 Configuration 16
4.3 Parameter Setting PAGE
4.4 Access levels PAGE 27
5 DISPLAYS PAGE 29
6 COMMANDS PAGE
6.1 Commands from Keyboard PAGE
6.2 Commands from Digital Inputs PAGE306.3 Commands from Serial communication(PLEASE, REFER THE ADDENDUM ON THE SERIAL COMMUNICATION)
7 SETPOINT PROGRAMMER (OPTIONAL) PAGE 34
7.1 Program Organisation PAGE 34
7.2 Operating Conditions PAGE
7.3 Program Input and editing PAGE 37
7.4 Run/Stop of a Program PAGE.
PAGE
TECHNICAL SPECIFICATIONS 39

INTRODUCTION

Congratulations for having chosen these universal controllers. They are the best result of our experience in designing and manufacturing of smart, powerful and high reliable controllers.

POWERFUL FEATURES AND A WIDE RANGE OF FUNCTIONALITIES

The process controllers of the M5000 series have been designed for the industrial environment, are provided with a complete set of functions, as a true universal instrument.

They can be used as ControllersProgrammers with 1 Setpoint profile of 16 segments.

1.1 PRODUCT CODING

The complete code is displayed on the instrument label.

The information about product coding are accessible from the front panel by mean of a particular procedure described at section 5.1 pag 29

Power supply	A
$100-264 \mathrm{Vac} 48 / 63 \mathrm{~Hz}$	$\mathbf{3}$
$18-28 \mathrm{Vac} 48 / 63 \mathrm{~Hz}$ and $20-30 \mathrm{Vdc}$	$\mathbf{5}$

OP1 [1]	OP2 [1]	OP3 [1]		B
Relay	Relay	Relay (alarm only)		1
Relay	Triac	Relay (alarm only)		2
Triac	Relay	Relay (alarm only)		4
Triac	Triac	Relay (alarm only)		5
Option 1 [2]		Option 2 [2]	C	D
None		None	0	0
		Potentiometer Input (PI)	0	1
Digital Input \#2 (DI2)		Remote Setpoint Input (RSP) [2]	0	2
		Current Transformer Input (CTI)	0	3
		Logic or Analog Output 4 [3]	0	4
None		Logic or Analog Output 4 + RSP [2] [3]	0	5
RS485 Modbus/Jbus		None	5	0
		Potentiometer Input (PI)	5	1
RS485 Modbus/Jbus + DI2		Remote Setpoint Input (RSP) [2]	5	2
		Current Transformer Input (CTI) [2]	5	3
		Logic or Analog Output 4 [3]	5	4
Option 3		User manual	E	F
None		Standard English/Spanish manual	0	3
Setpoint Program 1/16 [4]		Standard English/Spanish manual	1	3
Front Bezel colour			G	H
Dark Grey (standard)			0	0
Beige			1	0

Notes
[1] Relay SPST N.O. 2A/250V; Triac 1A/250V
[2] Not available with 'EF' option '13' of Setpoint Program 1/16
[3] Analog Output 4 is field configurable for control or retransmission output as $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$
This output can also be field configured as a logic output at 22 Vdc 20 mA via software
The addition of Output 4 does not affect any of the other three outputs
[4] One setpoint program with up to 16 segments, not available with 'CD' options of '02', '05', \& '52

Installation must only be carried out by qualified personnel.

Before proceeding with the installation of this controller, follow the instructions illustrated in this manual and, particularly the installation precautions marked with the $\triangle \subset \in$ symbol, related to the European Community directive on electrical protection and electromagnetic compatibility.

$\triangle C E$

To prevent hands or metal touching parts that may be electrically live, the controllers must be installed in an enclosure and/or in a cubicle.

2.2 ENVIRONMENTAL RATINGS

Operating Conditions		
$\stackrel{2000}{ }$	Altitude up to 2000 m	
${ }^{\circ} \mathrm{O}$	Temperature $0 \ldots . .50^{\circ} \mathrm{C}$	
\%Rh	Relative Humidity 5... 95 \%Rh non-condensing	
Special Conditions		Suggestions
${ }^{2000}$	Altitude > 2000 m	Use 24V~ supply version
${ }^{\circ} \mathrm{C}$	Temperature $>50^{\circ} \mathrm{C}$	Use forced air ventilation
\%Rh	Humidity > 95 \%Rh	Warm up
	Conducting atmosphere	Use filters

Forbidden Conditions \mathbf{Q}

	Corrosive atmosphere
爯	Explosive atmosphere

UL note

For use on a Flat Surface of a Type 2 and
Type 3 "raintight" Enclosure

2.3 PANEL MOUNTING

2.3.1 INSERT THE INSTRUMENT

1 Prepare panel cut-out
2 Check front panel gasket position

2.3.3 CLAMPS REMOVING

1 Insert the screwdriver in the clips of the clamps
2 Rotate the screwdriver

2.3.2 INSTALLATION SECURING

1 Fit the mounting clamps
2 Push the mounting clamps towards the panel surface to secure the instrument

2.3.4 INSTRUMENT UNPLUGGING

 $\triangle C \epsilon$1 Push and
2 Pull to remove the instrument Electrostatic discharges can damage the instrument
Before removing the instrument the operator must discharge

ELECTRICAL CONNECTIONS

PRECAUTIONS

$\triangle C \in$

Despite the fact that the instrument has been designed to work in an harsh and noisy environmental (level IV of the industrial standard IEC 8014), it is strongly recommended to follow the following suggestions.

©

All the wiring must comply with the local regulations.

The supply wiring should be routed away from the power cables.
Avoid to use electromagnetic contactors, power relays and high power motors nearby.
Avoid power units nearby, especially if controlled in phase angle

Keep the low level sensor input wires away from the power lines and the output cables.
If this is not achievable, use shielded cables on the sensor input, with the shield connected to earth.
3.1 TERMINATION UNIT $\triangle C \epsilon$

Terminals

Supervisory

Notes:

1] Make sure that the power supply voltage is the same indicated on the instrument.
2] Switch on the power supply only after that all the electrical connections have been completed.
3] In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument. The power supply switch shall be easily accessible from the operator.

4] The instrument is protected with a 0.5 A~ T fuse. In case of failure it is suggested to return the instrument to the manufacturer for repair.
5] To protect the instrument internal circuits use:

- 2 A~T fuses for Relay outputs
-1 A~T fuses for Triac outputs
6] Relay contacts are already protected with varistors.
Only in case of 24 V ~ inductive loads, use model A51-065-30D7 varistors (on request)

UL note

Use 60/70 ${ }^{\circ} \mathrm{C}$ copper (Cu) conductor only.

Switching power supply with multiple isolation and internal fuse

- Standard version: nominal voltage:
100-240V~ (-15\% + 10\%)
Frequency $50 / 60 \mathrm{~Hz}$
- Low Voltage version:

Nominal voltage:
$24 \mathrm{~V} \sim(-25 \%+12 \%)$ Frequency $50 / 60 \mathrm{~Hz}$ or $24 \mathrm{~V}-(-15 \%+25 \%)$

- Power consumption 3W max

$$
150 \Omega / \text { lead maximum }
$$

/77
\qquad

A ForJLTKSR thermocouple type

- Use always compensation cable of the correct type for the thermocouple used
- Use always compensation cable of the correct type for the thermocouple used
- The shield, if present, must be connected to a proper earth.

B For PT100 resistance

 thermometer- If a 3 wire system is used, use always cables of the same diameter ($1 \mathrm{~mm}^{2} \mathrm{~min}$).
20 //lead maximum resistance
- If a 2 wire system is used, use always cables of the same diameter ($1.5 \mathrm{~mm}^{2} \mathrm{~min}$).

4. When the distance between the controller and the sensor is 15 meters, using a cable of $1.5 \mathrm{~mm}^{2}$ diameter, produces an error in the measure of $1^{\circ} \mathrm{C}$.

B1 For $\Delta \mathrm{T}$ (2 x Pt100)

- Use wires of the same length 20 //lead maximum resistence.

R1 + R2 must be $<320 \Omega$

C For DC input

Input resistance $=30 \Omega$ for mA Input resistance $=10 \mathrm{M} \Omega$ for mV Input resistance $=10 \mathrm{~K} \Omega$ for Volt

C1 For 2 wires transmitters

- Power supply to the transmitter

18V- $\pm 10 \%$
30 mA max
Input resistance $=30 \Omega$

5 watt burden resistor 0.5Ω for 1 A secondary transformer coil 0.1Ω for 5 A secondary transformer coil

A For current transformer CT

 for the measure of the load current- Primary coil 10A...100A
- Secondary coil 50 mA default 100 mA jumper selectable

© If the analogue input is provided, the terminals for the Remote Setpoint are 10(+) and 9(-)

3.3.4 DIGITAL INPUTS

B From Remote Setpoint

Current

$0 / 4 \ldots 20 \mathrm{~mA}$
Input resistance $=30 \Omega$
Voltage
$1 . . .5 \mathrm{~V}, 0 . . .5 \mathrm{~V}, 0 . . .10 \mathrm{~V}$
Input resistence $=300 \mathrm{~K} \Omega$

C From Position Potentiometer

 To read the real position of the motor or the valve
$\triangle C \sigma$

- The associated function is active when the digital input is ON (see table on page 33)
- The second digital input (DI2) is available only with the following options:
Remote Setpoint ($\mathrm{D}=2$)
Current transformer ($\mathrm{D}=3$)
Logic / analogue output ($D=4$)

The functionality associated to each of the OP1 OP2 OP3 and OP4 outputs is defined during the configuration of the instrument.
The possible choices are:

	Control			Alarms			Retransm. PV-SP
1	Single output	OP1 Heat			OP2	OP3	OP4-C
2	Single output	OP4 Heat		OP1	OP2	OP3	
3	Single output	OP1 Heat	OP2 Cool			OP3	OP4-C
4	Heat/ Cool	OP1 Heat	OP4 [1] Cool		OP2 [2]	OP3	
5	Heat/ Cool	OP4 [1] Heat	OP2 Cool	OP1 [2]		OP3	
6	Valve	OP1 Raise	OP2 Lower			OP3	OP4-C

where:

OP1 - OP2	Relay or Triac output
OP3	Relay output
OP4	Analogue or Logic output
OP4-C	Analogue output

Note

[1] In case of OP4 analogue output, its status is not visualised by any red led
[2] When the OP4 logic output is selected, the status of OP1 and OP2, as alarms, is not displayed by any red led

3.3.5-A SINGLE RELAY

 OUTPUT (TRIAC)

1 NO contact
3.3.5-C SINGLE ANALOGUE
OUTPUT (OPTION) $\triangle C \epsilon$

galvanic isolated
$500 \mathrm{~V} \sim / 1$ min
$750 \Omega / 15 \mathrm{~V}$ max if current output $500 \Omega / 20 \mathrm{~mA}$ max if voltage output
3.3.5-B SINGLE LOGIC OUTPUT (OPTION) $\triangle \subset$

Output 0...22V- $\pm 20 \%$ (20mA max) galvanic isolated

3.3.5-D VALVE DRIVE OUTPUT

 $\triangle C E$

3 pole output with NO contacts (open, stop, close)

3.3.5-E HEAT COOL OUTPUT RELAY/RELAY (TRIAC/TRIAC)

$\triangle \mathrm{AC}$

2 NO contacts

$\triangle C \sigma$

\triangle The relay/triac output OP1, OP2 and OP3, can be used as alarm outputs only if they are not used as control outputs.

galvanic isolated
500 V~/ 1min
$750 \Omega / 15 \mathrm{~V}$ max if current output $500 \Omega / 20 \mathrm{~mA}$ max if voltage output
© The analogue/Logic output OP4 can be used for signal retransmission only if it is not used as control output.

- Galvanic isolation 500V~/1 min Compliance to the EIA RS485 standard for Modbus/Jbus

〔 Please, read the user instructions on the "M5000 controller MODBUS/JBUS protocol"
4.1.A KEYS FUNCTION AND DISPLAY IN OPERATOR MODE

4.1.B KEYS FUNCTION AND DISPLAY IN PROGRAMMING MODE

4.1.1 NUMERIC ENTRY

(i.e. the modification of the value of a stored Setpoint from 275.0 to 240.0)

Press © or momentarily to change the value of 1 unit every push. Continued pressing of $\mathbb{\sim}$ or \mathbb{Q} changes the value, at rate that doubles every second. Releasing the button the rate of change decreases. In any case the change of the value stops when it has reached the max/min limit set for the parameter.

2nd stored
Setpoint

2nd stored
Setpoint

2nd stored
Setpoint

The new value is
entered when the next parameter is selected by mean of the key.

4.1.2 MNEMONIC SETTING

(Way to modified configuration page 16 / 18)

Press the $\widehat{\sim}$ or to display the next or previous mnemonic for the selected parameter. Continued pressing of (or will display further mnemonics at a rate of one mnemonic every 0.5 sec . The mnemonic displayed at the time the next parameter is selected, is the one stored in the parameter

Tab． 1 Input type

Value	Description	いロロ！
Eに．．	$0 . .600^{\circ} \mathrm{C}$	$32 . .1112^{\circ} \mathrm{F}$
Er．L	$0 . .600^{\circ} \mathrm{C}$	$32 . .1112^{\circ} \mathrm{F}$
Eヒ，K＇	$0 . .1200^{\circ} \mathrm{C}$	$32 . .2192^{\circ} \mathrm{F}$
ヒに，Б	0．．． $1600^{\circ} \mathrm{C}$	$32 . .2912^{\circ} \mathrm{F}$
Eに．	$0 . .1600^{\circ} \mathrm{C}$	$32 . .2912^{\circ} \mathrm{F}$
にに，	－200．．．400º	$-328 . . .752^{\circ} \mathrm{F}$
に－ا心，	Custom range	on request
rヒGl	－200．．．600${ }^{\circ} \mathrm{C}$	－328．．．1112 ${ }^{\circ} \mathrm{F}$
「にばく	$-99.9 . .300 .0^{\circ} \mathrm{C}$	－99．9．．．572．0％
GELE	－50．0．．50．0 ${ }^{\circ} \mathrm{C}$	－58．0．．．122．0％
717	$0 . .50 \mathrm{mV}$	Engineering units
［－5	0．．． 5 Volt	
1－5	1．．．5 Volt	
［］－17）	0．．． 10 Volt	
［］－	$0 . . .20 \mathrm{~mA}$	
$4-\mathrm{E}^{-17}$	$4 \ldots 20 \mathrm{~mA}$	

Tab． 2	Engineering units
Value	Description Ln it
คロロ｜	None
맏	Centigrade degrees
听	Fahrenheit degrees
17%	mA
77.1	mV
U．	Volt
bar	bar
P51	PSI
rit	Rh
FH	Ph

Tab． 3 Setpoint type

Value	Description	$1-5 . F . E$
Lat	Local only	
rer	Remote only	
L－r	Local／remote only	
Lar．t	Local－trim	
－ETI．E	Remote－trim	

［］－1［］0．．． 10 Volt
［］－7］ $0 . . .20 \mathrm{~mA}$

Tab． 5	Control type	
Value	Description	［］1．t
［7F．re	Reverse action	On－Off
［7F．日，	Direct action	
Frator	Direct action	P．I．D．
Fralir	Reverse action	
11.10	Direct action	Modulating valves
U1．EU	Reverse action	
H．E．L	Linear	Heat／ Cool
H．E．IIL	Oil charac．	
H．E．HE	Water charac．	

Tab． 6	Heat control output	
Value	Description	H．E．ITF
IIFF	Not used	
－1	Relay 1	Digital signal
1－9	Logic	Digital signal
［1－5	0．．．5 Volt	Analogue signal
－5	1．．．5 Volt	
［7－1］	0．．． 10 Volt	
［1－2］	0．．． 20 mA	
$4-2[$	4．．． 20 mA	

Tab． 8 Digital Inputs function

		IL I
Value	Description	H2．
DFF	Not used	
L－r	Local／remote	
月171\％	Auto／manual	
5.5 .1	1st stored Setp	
5.9	2nd stored Setp	
E＂， 1	Keypad lock	
Stal 1	5．fer．slope disab	
H．1．P	Measure hold	
－ H	Run／stop of a p	ram

Tab． 9 Alarm type

Value	Description	AL I AI
		FIL 3 ALY
DFF	Not used	
FE．H	Active high	Absolute
F5．1．	Active low	
IEILIH	Active high	Deviation
HEIII	Active low	
6and	Active out	Band
HE，	Active high	Heater Break
16日	Loop break	m（Al1 only）

Tab． 7	Cool control output	
Value	Description	［．［1］${ }^{\text {P }}$
DFF	not used	
re	relay 2	Digital signal
L－G	Logic	Digital signal
［1－5	0．．．5 Volt	
1－5	1．．．5 Volt	
［］－15］	0．．． 10 Volt	signal
［1－E］	0．．． 20 mA	
	4．．． 20 mA	

Tab． 7 Cool control output

L6日 Loop break alarm（Al1 only）

4．2．1 AL1，AL2，AL3，AL4 ALARMS CONFIGURATION

It is possible to configure up to 4 alarms： AL1，AL2，AL3，AL4（see pag．17），select－ ing，for each of them：
A the type and the operating condition of the alarm
（table 9 page 18）
B the functionality of the alarm acknowl－ edge（latching）LEEG
C the start－up disabling（blocking）bLaI
D the physical output of the alarm

The outputs can be used for alarms if they are not used as control outputs （see par．3．3．5 page12）
It is possible to route up to 4 alarm to a sin－ gle output（OR of the alarms）．

Alarm occurrence display

This function can be enabled by the configuration software．
（please read the user instruction on the＂M5000 LINE MODBUS／JBUS PROTOCOL＂，supplied separately）

The type of alarm is presented flashing，on the front panel in alternation with the PV value．

The red led of the activated alarm output is on．

The range of the alarm threshold corre－ spond to the whole span and it is not lim－ ited by the SP Setpoint span．

［A］OPERATING CONDITIONS

Absolute alarm

Deviation alarm

Band alarm

［B］ALARM ACKNOWLEDGE

 FUNCTIONThe alarm，once occurred，is presented on the display until to the time of acknowl－ edge．The acknowledge operation consists in pressing any key．

$$
\begin{aligned}
& \text {-1E゙に } \\
& \text { したにな }
\end{aligned}
$$

After this operation，the alarm leaves the alarm state only when the alarm condition is no longer present．
［C］START－UP DISABLING

［D］LOOP BREAK ALARM LBA

When the controller connection to the sen－ sor is discontinued or other faults are detected in the control loop，the AL1 alarm becomes active，after a predefined time of 1 to 9999 sec ．，from the detection of the failure．（see page 22）
The alarm state ceases when the fault con－ dition is no longer present．

\triangle In case of ON－OFF control，the LBA alarm is not active．

4．3 PARAMETER SETTING

\triangle

The parameter setting procedure has a timeout．If no keys are pressed for， at least， 30 seconds，the controller switches back，automatically，to the operator mode．

After having selected the parameter or the code，press $\widehat{\Delta}$ or $\boldsymbol{~ t o}$ modify the value（see pag 15 and 31） The value is entered when the next parameter is selected，by pressing the key．

Pressing the key，the operator mode is presented on the display．

Setpoint low limit from low scale up to ほロードーシ

Setpoint high limit from ${ }^{-1,1-1 / 2}$ It to full scale

Back to the 1st parameter of the Setpoint menu．

4.3.1 PARAMETERS

The controller parameters have been organised in group, according to their functionality area.

SETPOINT MENU

Values of the two Setpoints, that are activated by mean of digital inputs, communication parameters, and keyboard. The Setpoint active is indicated by the SP1 or SP2 green led.

Setpoint
low limit

Setpoint

high limit
High and low limit of the Setpoint SP. The minimum span ($5^{5} \mathrm{~F}$ I-5PE') must be greater than 100 digit.

E, İ.	Setpoint ramp up
	Setpoint ramp down

This parameter specifies the maximum rate of change of the Setpoint. Its units are: digit/sec., digit/min. and digit/hour.
When the parameter is GFF, this function is disabled and the new Setpoint value is reached immediately after being entered (through the keyboard, the digital inputs and the serial communication). Otherwise, the
value entered is reached according to the configured rate of change.

Remote

Setpoint Ratio
This parameter defines the maximum span of the Remote Setpoint.

1- IV İ Remote

It defines the low range of the Remote Setpoint, in engineering units.

Remote Setpoint Bias and Ratio

PV = Process variable
LR = PV low limit
$H R=P V$ high limit
SR = Remote Setpoint
$a(a)=$ SR starting point
$b(b)=$ SR ending point

If SR starting point is lower then the ending point，both expressed in engi－ neering units：

rt ル＝$\frac{b-a}{H R-L R}$
Example：

ーも ルー

$$
\frac{100-20}{600-(-200)}=\frac{80}{800}=0.1
$$

If SR starting point is higher then the ending point，both expressed in engi－ neering units

に
－t \quad I＝$\frac{\mathrm{b}^{\prime}-\mathrm{a}^{\prime}}{\mathrm{HR}-\mathrm{LR}}$
Example：
に וּ
ーも ルー

$$
\frac{20-100}{600-(-200)}=\frac{-80}{800}=-0.1
$$

Working Setpoint（SP）as com－ bination of Local Setpoint（SL） and remote signal

Setpoint type Lars
（table 3，page 18）

$$
S P=S L+(1-t \cdot R E M)
$$

Setpoint type－Ert．
（table 3，page 18）
$S P=R E M+(r t, \square \bullet S L)$
＋
SIGN $=$ Remote signal percentage
SPAN＝HR－LR
REM $=\frac{\text { SIGN＊SPAN }}{100}$

Examples：
Local Setpoint（SL）with an external Trim with multiplying coeff．of $1 / 10$ ：
Setpoint type＝ara ．t
rt $-1=0.1$
七時 $=0$
Remote Setpoint（SR）with an inter－ nail Trim with multiplying coeff．of $1 / 5$ ：
Setpoint type＝rel．
$r-a=0.2$
ロ㫑
Remote Setpoint range equal to the Input range：
Setpoint type＝\＆ar．
rE $=1$
女明 $=$ LR
GL＝0

ALARM MENU

（see page 19）

SID MENU

Proportional Band

${ }^{18} \cdot 1$
 Cool Proportional Band

This parameter specifies the propor－ tional band coefficient that multiplies the error（SP－PV）

－

 Integral
 Time

I－．I．I－
 Cool integral Time

It is the integral time value，that spec－ ifies the time required by the integral term to generate an output equiva－ lent to the proportional term
When DFF the integral term is not included in the control algorithm．

L．
 Derivative
 Time

Er．I－
Cool Derivative Time

It is the derivative term coefficient that specifies the time required by the pro－ portional term P to reach the level of D ． When DFF the derivative term is not included in the control algorithm．

4.3.1 PARAMETERS (cont.)

Eli.iOvershoot control
(Automatically disabled when the adaptive tuning is running)
This parameter specifies the span of action of the overshoot control. Setting lower values $(1->0.01)$ the overshoot generated by a Setpoint change is reduced. The overshoot control doesn't affect the effectiveness of the PID algorithm. Setting 1, the overshoot control is disabled.

This term specifies the value of the control output when PV = SP, in a PD only algorithm (lack of the Integral term).

TUNING

Two tuning method are provided:

- Initial one shoot Autotuning
- Continuous, self learning Adaptive Tuning

When the Autotuning is started, the controller generates a rapid burst of ON - OFF transition and monitors the response, in order to calculate the optimal PID terms parameters. Once calculated the terms values are immediately used in the control algorithm. (a minimun error of 5% of span is needed to start the Autotuning)

One shot initial autotuning

Setpoint
change
Control
output

The self-learning adaptive autotune developed by ASCON, is not intrusive. It doesn't affect the process, at all, during the phase of calculation of the optimal terms parameters.
It is particularly suitable for controlling process whose control characteristics change with time or are not linear in relation to the Setpoint values.
It doesn't require any operation by the user. It is simple and works fine: it samples continuously the process response to the various perturbations, determining the frequency and the amplitude of the signals. On the basis of this data and their statistical values, stored in the instrument, it modifies automatically the PID term parameters.
It is the ideal for all applications where it is required to change continuously the PID terms parameters, in order to adjust the PID to the changes of the process dynamic conditions.

Continuous adaptive tune

In case of power off with the Adaptive Tune enabled, the values of the PID terms parameters are stored, in order to be reused at the next power on.
At power on the Adaptive Tune starts automatically.

INPUT MENU

\section*{| $-I^{-}$ | \boldsymbol{I} |
| :--- | :--- | :--- | Input filter}

Time constant, in seconds, of the RC input filter on the PV input. When this parameter is GFF the filter is bypassed.

Filter reponse

IIN, I-, Measure
 Bias

This value is added to the measured PV input value. Its effect is to shift the whole PV scale of its value (± 60 digits).

Sampling time, in seconds, of the instrument. This parameter is normally used when controlling slow process, increasing the sampling time from 0.1 to 10 seconds.

OUTPUT MENU

Control output hysteresis

Control output hysteresis span, hy, set in \% of the full scale.

E.	Control output cycle time
E.İ, İ	Cool cycle time

It's the cycle time of the time propotioning control output. The PID control output is provided by the pulse width modulation of the waveform.

Control Output

 low limitIt specifies the minimum value of the control output signal.
It is applied in manual mode, too.

Control output

high limit
Cool output high limit
It specifies the maximum value the control output can be set. It is applied in manual mode, too.

This value, specified in \%/seconds, with range from 0.01 to $99.99 \% / \mathrm{sec}$. provides the maximum rate of change of the output. When set to IIF F this function is disabled.

 Soft start
 of the control output

It specifies the value at which the control output is set during the start up phase.

EI I- IT Soft start time

This value specifies the time the start up phase lasts. The start up phase starts at power up of the controller.

Heat/Cool
deadband
This parameter specifies the width of the deadband between the Cool and the Heat channel
Heat / Cool algorithm

TIIN.IE Ti Travel time

It provides the time required to the motor positioner to go from the 0\% position to 100\%

|if_f.i- I_) Minimum step

It specifies the minimum allowed time of activation of the output to a motor positioner that produces a sensible effect. It is related to the deadband of the positioner

SERIAL COMMUNICATION
 MENU

FI - - 1 - Controller
 address

The address range is from 1 to 247 and must be unique for each controller on the communication bus to the supervisor.
When set to IFF the controller is not communicating

It provides the baud rate in the range from 1200 to 19.200 bit/sec.

This Slave protocol allows the supervisor to read and write (when it is possible) all the parameters of the controller.

ACCESS MENU

(see page 27)

CONFIGURATION MENU

(see page 16)
4.4 ACCESS LEVEL - PASSWORD - CALIBRATION

4.4 ACCESS LEVELS PASSWORD CALIBRATION

With the access level Edit, the user defines which groups and parameters are accessible to the operator

After selecting and confirming the access level Edit, enter in the parameters menu.
The code of the access level is displayed on the front panel.

Press the $\widehat{\Delta}$ and \mathbb{V} keys to select the proper level.

The parameters in the access level F日泪 1 e are recalled on the front panel through the procedure of fast parameter access illustrated in par. 5.2 pag 29. The maximum number of fast parameters is 10 .

At the end of the parameter list of the selected group, the controller quits from the Edit access level.
Therefore, the Edit level must be selected for each group of parameters

The access level of groups and parameters, is activated through

Confirm

The commands can be entered
in 3 ways:

6.1 KEYBOARD

- Setpoint modification (page 31)
- local/remote selection (page 31)
- stored Setpoint display (page 31)
- manual mode (page 32)
- tuning start (page 32)
- programmer stop (page 38)
see page 33

6.3 SERIAL COMMUNICATIONS
see the manual on this topic

A. SETPOINT MODIFICATION

The Setpoint is directly modified with the $\mathbb{\Delta} \mathbb{V}$ keys.
Once entered, the new value is checked and becomes operating after 2 seconds.. The end of this phase is flagged by flashing momentarily the display with SP.

Operator
mode

Example of Setpoint modification from 275 to 350

Modified Setpoint value

Flash momentarily the SP value to confirm that it has become operating. back to the operator mode
B. LOCAL/REMOTE

C. STORED SETPOINTS SELECTION

The Setpoint is directly modified with the $\widehat{\mathbb{Q}}$ keys. Once entered, the new value is checked and becomes operating after 2 seconds.. This phase is flagged by flashing momentarily the display with SP.

6.1.2 AUTO/MANUAL MODE

6.1.3 TUNING

This controller is provided with 2 different Tuning algorithm

- One shot tuning for calculating the optimal PID terms parameters.

- Continuous tuning (adaptive tuning) for a continuous calculation of the PID terms parameters in order to adapt the control to dynamically changing process or not linear ones.

6.2 DIGITAL INPUT COMMANDS

A function is assigned, through the configuration procedure to each DI1 and DI2 digital input. (see the parameters setting at tab 8 at pag 17).
The configured function is activated when the digital input (free voltage contact or open collector output) is in the On state. It is deactivated by setting the input to the Off state. The activation of the function through the digital input has the highest priority than through the keypad or through the serial communication.

Functio		Parameter value	\rightarrow Performe	peration	Note
None			-	-	Not used
Set manual mode		-	Automatic	Manual	
Keypad lock			Unlock	Locked	With the keypad locked the commands from digital inputs and serial communication are still operating
PV measure hold			Normal operation	PV is hold	The value of PV is "frozen" at the time the digital input goes to the close state
Setpoint slopes inhibition			Rate limiting is active	Normal operation	When the input is in the on state, the Setpoint is changed in steps
	1st stored Setpoint	$\underline{\square}$	Local	1st SP	If more than one digital input is selecting a Setpoint, the last to be activated is the one operating.
	2nd stored Setpoint	E,	Local	2nd SP	
	Remote Setpoint	L- -	Local	Remote	
	Start/stop of a program	-1.-1.		Hold/Run	The status (RUN/HOLD) changes every time the digital input switches from Off to On.

PROGRAMMED SETPOINT

INTRODUCTION

The controller supplied with the Setpoint programmer option (mod. M5000-3...

1) offers, in alternative to the adaptive tuning, the functionality to define, store, display and execute a program consisting in the Setpoint profile in time.

MAIN CHARACTERISTICS

- 1 program, 16 segments/program
- start, stop, hold etc, commands from the keyboard
- time base in seconds, minutes or hours
- continuous or up to 1... 9999 time cycling of the program
- 1 OP3 digital output with the state profile defined by the program
- setting of the maximum allowed deviation from the Setpoint

7.1 PROGRAM STRUCTURE

The program consists of a sequence of segments.

For each segment, it is specified:

- the Setpoint to reach EP.
- the duration present of the segment E.I.
- the state of the OP3 output

The program consists of:

- 1 initial segment named \square
- 1 end segment named F
- $1 . . .14$ normal segments

Initial segment

Its main purpose is to define the value the process variable has to maintain before starting the program.

End segment

Its main purpose is to define the value the process variable has to maintain at the end of the program and until further changes of Setpoint.

Normal segments

These segments build up the profile program. There are 3 types of segments:

Step

$5 \cdot=$
Target setpoint
t. = Duration
---- = Previous segment

- = Current segment
__ = Next segment

The OP3 digital output state, during the segments, is defined in the program
[10 contact close (On)
[7) con con

7．2．1 MAXIMUM ALLOWED DEVIATION（band）

If the PV controlled input value exceeds the band，centred around the SP，the segment time is extended of the same time the PV input stays out of the band． The band width is defined in a para－ meter of the program segment．
The actual segment period is calcu－ lated as $t^{--}+\mathrm{Ti}$
A．Ramp

B．Dwell

7．2．2 RE－START OF A PROGRAM AFTER A POWER FAILURE

The parameter $F \mathbb{G}, L$ ．specifies the behaviour of the programmer at power up（see pag．37）．Selected between the following 3 choices：

－ロッして	Continue
－－－	Reset
－\＃17\％	Ramp

If
the execution of the program starts from the point reached at the power failure time．

All the parameters，like Setpoint and the remaining time are restored at the values they had at power off．

If $-[-15$
at power on the program ends and goes back to local mode．

If 1 BITIF is selected，
the execution of the program starts from the point reached at the power failure time．
In this case，the programs contin－ ue with PV reaching SV with a ramp，whose slope corresponds to the one of the segment running at the power off．

The drawing below illustrates the situation．

Power off during a dwell

Power off during a ramp

The various commands, supported by the controller, are different for each of the following operating phases:
A] when in Local Setpoint mode
B] during the execution of a program
C] when the program is in hold
Commands supported by the controllers

The different phase are displayed in a chained way, just for easing the understanding of the functionality.
Two different mode for starting and stopping a program are provided:
direct mode with the * key
through the parameter menu

The RUN green led is flashed at high rate when the controlled
variable is out of the allowed deviation band
The current time of a segment is hold up to the time the variable
re-enter in the band.

TECHNICAL SPECIFICATIONS

Features at $25^{\circ} \mathrm{C}$ env. temp.	Description			
Total configurability	The choices are: input type, operating mode, type of control, safety strategies, alarm strategies			
Operating modes	1 loop with single/double output			
	1 loop as the latter with the addition of the Setpoint programmer			
Control mode	Algorithm	PID with velocity algorithm, for controlling motorised valves		
	Proportional band (P)	0.1...999.9\%		PID control
	Integral time (I)	1... 9999 sec.	(user enabled/disabled)	
	Derivative time (D)	0.1...999.9 sec.		
	Error band	0.1...10.0 digit		
	Manual reset	1...100\% output	(user enabled/disabled)	Time proportioning control
	Cycle time	0.2...100.0 sec.		Discontinuous control
	Hysteresis	0.1...5.0\%		ON-Off control
	Dead band	0.0...5.0\%		Heat/Cool control
	Cool proportional band	0.1...999.9\%		
	Cool Integral time	1... 9999 sec .	(user enabled/disabled)	
	Cool Derivative time	0.1...999.9 sec.		
	Cool cycle time	0.2... 100.0 sec .		
	Motor travel time	$15 . . .600 \mathrm{sec}$.		Motorised positioner
	Motor minimum step	0.1...5.0\%		
	Feedback potentiometer	$100 \Omega . . .10 \mathrm{~K} \Omega$		
PV input (see table 1 page 18 for the signal ranges)	Common characteristics	A/D converter with resolution of 160.000 points Update measurement time: 50 ms Sampling time (max update time of the output) : $0.1 \ldots 10.0 \mathrm{sec}$. configurable Input bias: - 60...+ 60 digit Input filter with enable/disable 0.1 ...999.9 sec.		
	Accuracy	$0.25 \% \pm 1$ digits for temperature sensors $0.1 \% \pm 1$ digits (for mV and mA)		Between 100...240V~ the error is minimal

8 - Technical Specifications

Features at $25^{\circ} \mathrm{C}$ env. temp.	Description			
PV input	Resistance thermometer (for Δ T: R1+ R2 must be $<320 \Omega$)	Pt100 2 a $0^{\circ} \mathrm{C}$ (IEC 751) ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable	2 or 3 wires or 2 Pt100 for ΔT	Max. wire res.: 20Ω (3 wires) Input drift $0.1^{\circ} \mathrm{C} / 10^{\circ} \mathrm{C}$ Env. temperature $<0.1^{\circ} \mathrm{C} / 10 \Omega$ Wire Resistance
	Thermocouple	L,J,T,K,R,S (IEC 548) ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selectable	Internal cold junction compensation	Max. wire res.: 150Ω Input drift $<2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Env. temperature $<5 \mu \mathrm{~V} / 10 \Omega$ Wire Resistance
	DC input (current)	$\begin{aligned} & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \mathrm{Rj}=30 \Omega \end{aligned}$	Engineering units Configurable decimal point position with or without $\sqrt{ }$ Initial scale.:- 999... 9999 Full scale.: -999... 9999 (minimum range of 100 digits)	Input drift $<0.1 \% / 20^{\circ} \mathrm{C}$ Env. temperature $<5 \mu \mathrm{~V} / 10 \Omega$ Wire Resistance
	DC input (voltage)	$\begin{aligned} & 0 \ldots 50 \mathrm{mV} \\ & \mathrm{Rj}=10 \mathrm{M} \Omega \end{aligned}$		
		$\begin{aligned} & 1-5 / 0-5 / 0-10 \mathrm{~V} \\ & \mathrm{Rj}=10 \mathrm{~K} \Omega \\ & \hline \end{aligned}$		
Auxiliary inputs (options)	Remote Setpoint Not isolated accuracy 0.1\%	Current 0/4...20mA $R \mathrm{Rj}=30 \Omega$	Bias in engineering units and \pm range	
		$\begin{aligned} & \text { Voltage } \\ & 1-5 / 0-5 / 0-10 \mathrm{~V} \\ & \mathrm{Rj}=300 \mathrm{~K} \Omega \end{aligned}$	Ratio from -9.99...+99.99	
			Local + Remote Setpoint	
	CT current transformer	max span 50 or 100 mA hardware selectable	Display from 10 to 200 A resolution of 1A with alarm threshold (Heater break alarm)	
	Potentiometer	100Ω...10K Ω supply 300 mV	Position feedback measurement	
Digital inputs	2 logic	The closure of the external contact produces any of the following actions:	Auto/Man mode change, Local/Remote Setpoint mode change, Stored Setpoints activation, keypad lock, measure hold and slopes inhibit.	
			Start, stop, hold of a program (only with Setpoint programmer)	
Control output (cont.)	Single or double channel, direct or reverse action			
	Minimum limit	0...100.0\% (OP1 heat)		
	Maximum limit	0...100.0\% (OP1 heat), -100.0...0\% (OP2 cool)		

Features at $25^{\circ} \mathrm{C}$ env. temp.	Description		
Control output	Maximum slope ${ }^{\text {a }}$ (0.01...99.99\%	and down	
	Safety value $\quad-100 \ldots 100 \%$.	nabled/disabled)	
	Time proportioning	SPST N.O., 2A/250Vac resistive load	
		1A/250Vac resistive load	
		0...22V-, 20mA max (for Solid State Relay)	
	Analogue	0/4...20mA max 750 //10V max	Galvanic insulation 500V~/1min. Resol.: 12 bit (0.025\%) Accur. 0.1%. Short circuit protection
		$\begin{aligned} & 0 \ldots 1 / 5 / 10 \mathrm{~V} \\ & 500 \Omega / 20 \mathrm{~mA} \text { max } \end{aligned}$	
	Valve Drive (open, stop, close)	$2 \times$ SPST Relay interconnected N.O., 2A/250Vac resistive load	
Alarms	Relay SPST N.O., 2A/250Vac resistive load Hysteresis 0.1...5.0\% symmetrical		
	Actions	Deviation threshold	\pm range
		Action type ${ }^{\text {a }}$ Band width	
		Absolute threshold	Whole scale
		Heater Break detection	
		Loop Break Alarm	
		Activation inhibit (blocking)	
		Acknowledge (latching)	
		Related to the program (optional) (OP3)	
OP4 analogue output (optional)	Galvanic insulated: 500 V~/1min. Resolution: 12 bit (0.025\%) Accuracy: 0.1\% . Short circuit protected	Current 0/4...20mA 750 / 10 V max	Retransmission of PV or SP
		Voltage 1-5/0-5/0-10V $500 \Omega / 20 \mathrm{~mA}$ max	
Setpoint	Ramp up and down, with slope in digit/sec., digit/minute or digit/hour between 0.0...10.0\% of the range High and low limits	Local plus 2 stored Setpoints	
		Only Remote	
		Local and Remote	
		Local with trim	
		Remote with trim	
		Time programmable (optional)	

Features at $25^{\circ} \mathrm{C}$ env. temp.	Description	
Programmable Setpoint (optional)	1 program, 16 segmen From 1 to 9999 cycles Time values in second Start, stop, hold, etc.	itial and 1 end) tinuous cycling ((IFF) tes and hours d from the keyboard, digital input and serial communications.
	One shot Tuning- step response method for calculating the PID terms parameters	
Tuning	Adaptive Tuning self-learning, not intrusive, analysis of the process response to perturbations and continuously calculation of the PID parameters (not available with the Setpoint Programmer option)	
Auto/Manual station	Integrated in the controller, bumpless Operated from keyboard, digital input and serial communication.	
Serial com. (optional)	RS485 isolated, Modbus-Jbus, 1200, 2400, 4800, 9600, 19200 bit/sec., 2 wires	
Auxil. supply	18V- $\pm 20 \%, 30 \mathrm{~mA} \mathrm{max}$ for transmitters (2, 3, 4 wires)	
Operational safety	Measure input	Detection of out of range, short circuit or sensor break with automatic activation of the safety strategies and alerts on display
	Control output	Safety value: $-100 \ldots+100 \%$. (user enabled/disabled)
	Parameters	Parameters and configuration data are stored in a non volatile memory for an unlimited time. They are organised in functionally homogeneous groups, like: visible and changeable, visible and not changeable, not visible.
	Access protection	Password to access the configuration data and the parameter protection menu
General characteristics	Supply	$100-240 \mathrm{~V} \sim(-15 \%+10 \%) 50 / 6 \mathrm{~Hz}$ or $24 \mathrm{~V} \sim(-25 \%+12 \%) 50 / 60 \mathrm{~Hz}$ and $24 \mathrm{~V}-(-15 \%+25 \%)$ power consumption 3W max
	Electric safety	Compliance to EN61010, installation class 2 (2500V) pollution class 2
	Electromagnetic compatibility	Compliance to the CE standards for industrial system and equipment
	Approvals	UL, cUL
	Protection EN650529	IP20 termination unit, IP65 front panel
	Dimensions	$1 / 16$ DIN - 48×48, depth 150 mm , weight 230 gr . apx.

WARRANTY

We warrant that the products will be free from defects in material and workmanship for 3 years from the date of delivery. The warranty above shall not apply for any failure caused by the use of the product not in line with the instructions reported on this manual.

ICONS TABLE

